
THE
EVENT-DRIVEN UI
BRIDGING THE GAP

KEVIN BADER



Copyright © 2019 Accenture. All rights reserved. 2

LIVE UPDATES!



Copyright © 2019 Accenture. All rights reserved. 3

LIVE UPDATES

Example: Conference Registration

• Allow people to register to the conference
• When someone has registered:
• send an email to the organizing team

• send an email to the new participant

• Assign a mentor to the participant
• It might take a while to find a good match..



Copyright © 2019 Accenture. All rights reserved. 4

LIVE UPDATES FOR CONFERENCE REGISTRATION

Conference
Service

submit
registration

form

This does
everything

frontend

backend

One backend, one 
frontend:

one source of data 
and events.



Copyright © 2019 Accenture. All rights reserved. 5

LIVE UPDATES FOR CONFERENCE REGISTRATION

Event-driven 
microservices.

Still one frontend.

submit
registration

form

Registration
Service

frontend

backend

Participant
registered

Notification
Service

Mentor
Matching
Service

email to
organizing team

email to
participant

...

...

Mentor assigned



Copyright © 2019 Accenture. All rights reserved. 6

LIVE UPDATES FOR CONFERENCE REGISTRATION

Event-driven 
microservices.

Still one frontend.

submit
registration

form

Registration
Service

frontend

backend

Participant
registered

Notification
Service

Mentor
Matching
Service

email to
organizing team

email to
participant

...

...

Mentor assigned

?



Copyright © 2019 Accenture. All rights reserved. 7

LIVE UPDATES FOR CONFERENCE REGISTRATION

Event-driven 
microservices.

Still one frontend.

submit
registration

form

Registration
Service

frontend

backend

Participant
registered

Notification
Service

Mentor
Matching
Service

email to
organizing team

email to
participant

...

...

Mentor assigned

?

Microservice:
How do I know if someone is 
currently online?
Frontend:
How to subscribe to events?



Copyright © 2019 Accenture. All rights reserved. 8

AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Frontends not aware how events
are stored.
Only open standards.

Enable the frontend to
participate in choreography:
• Frontends subscribe to events
• Microservice emit events and

don’t target specific frontends
• Enhances decoupling!



Copyright © 2019 Accenture. All rights reserved. 9

AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Frontends not aware how events
are stored.
Only open standards.

Frontends communicates
the user’s actions.
Microservices can react:
• start a (long-running) process
• analyze a user’s behavior
• notify the support staff
• ...



Copyright © 2019 Accenture. All rights reserved. 10

AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Frontends not aware how events
are stored.
Only open standards.

• Decouples teams
• Topic partitioning should not be 

part of the interface



Copyright © 2019 Accenture. All rights reserved. 11

AN EVENT-DRIVEN WORLD

Microservices emit events.
Frontends consume and produce 
events the same way other 
microservices do.
Frontends not aware how events
are stored.
Only open standards.



Copyright © 2019 Accenture. All rights reserved. 12

REACTIVE INTERACTION GATEWAY (RIG)



1. Scaling out: number of users, rate of events
2. Event sources: Kafka, Amazon Kinesis
3. Synchronous request, asynchronous processing
4. Authorization

CHALLENGES

Copyright © 2019 Accenture. All rights reserved. 13



Copyright © 2019 Accenture. All rights reserved. 14

1. SCALING OUT

events
grouped by
event type

events
grouped by
partition,
e.g. user ID

route events
to frontends

load balancer

frontends

event topics/partitions

frontends
subscribe
to events

• Many users,
few online

• Events from all
microservices



• Kafka as the de-facto standard for 
implementing event-driven architecture:

• Confluent Kafka platform

• Confluent Cloud on GCP

• Azure Event Hubs has Kafka-compatible API

• Amazon Managed Streaming for Kafka (MSK)

• Publish via HTTP
• Easier to setup and use during dev and test

• Used when decrypting data on-the-fly

2. EVENT SOURCES

Copyright © 2019 Accenture. All rights reserved. 15



• Asynchronous, event-driven processing is 
the new default

• Decoupling: easy to add/remove microservices

• Deployment: easy to deal with 
upgrades/rollbacks/downtime

• But: frontend and 3rd party clients often 
expect immediate response

• Requires “conversion” of asynchronously processed result 
into synchronous request-response 

3. SYNC REQUEST, ASYNC PROCESSING

Copyright © 2019 Accenture. All rights reserved. 16



Copyright © 2019 Accenture. All rights reserved. 17

3. SYNC REQUEST, ASYNC PROCESSING

HTTP POST

produce request event

pick up request event

process request

publish response

publish response

HTTP response

frontend message broker backend service

the frontend sees
a traditional API

while processing is
actually 

asynchronous



• Is ESSENTIAL: any event may be subscribed to
• As little business logic at possible
• As pluggable as possible

4. AUTHORIZATION

Copyright © 2019 Accenture. All rights reserved. 18



Copyright © 2019 Accenture. All rights reserved. 19

4. AUTHORIZATION

subscribe to events

forward published event

Alice authorization service

is Alice allowed
to subscribe to

those event types?

yes

Bob

publish event

is Bob allowed
to publish this event?

yes

subscribing to events
publishing events

authorized by

JWT validation or
calling a service



Copyright © 2019 Accenture. All rights reserved. 20

Microservices should
• not handle long-lived connections
• not publish “special” events for 

frontend consumption
Frontends should
• be agnostic of event partitioning on 

the backend
• not rely on proprietary formats
• be able to publish events
• be able to control what events they 

are subscribed to

REACTIVE INTERACTION GATEWAY

✓
✓

✓
✓

✓
✓



• Free Software, Apache 2.0 License, on GitHub
• Open standards:

– CNCF CloudEvents
– HTTP/1.1 and HTTP/2
– Server-Sent Events (SSE)
– WebSocket
– Kafka

REACTIVE INTERACTION GATEWAY

Copyright © 2019 Accenture. All rights reserved. 21



• No external dependencies
• Configuration using environment variables
• Available on Docker Hub

$ docker pull accenture/reactive-interaction-gateway

• Scales like a stateless service
$ kubectl scale deployment rig --replicas=10

REACTIVE INTERACTION GATEWAY

Copyright © 2019 Accenture. All rights reserved. 22



• Real-time UI for great user experience
• Extending event-driven architecture to the 

frontend decouples frontend and backend
• The Reactive Interaction Gateway enables 

this in a scalable way, using open standards

CONCLUSION

Copyright © 2019 Accenture. All rights reserved. 23



Copyright © 2019 Accenture. All rights reserved. 24

GitHub: kevinbader
Twitter: @KevnBadr

Check out the Reactive Interaction Gateway 
and let us know what you think!

github.com/Accenture/reactive-interaction-gateway

Thanks to:
• Dominik Wagenknecht <- had the idea
• Mario Macai <- long-term core team member
• Accenture’s Software Innovation team


